66 research outputs found

    Collaborative e-science architecture for Reaction Kinetics research community

    Get PDF
    This paper presents a novel collaborative e-science architecture (CeSA) to address two challenging issues in e-science that arise from the management of heterogeneous distributed environments: (i) how to provide individual scientists an integrated environment to collaborate with each other in distributed, loosely coupled research communities where each member might be using a disparate range of tools; and (ii) how to provide easy access to a range of computationally intensive resources from a desktop. The Reaction Kinetics research community was used to capture the requirements and in the evaluation of the proposed architecture. The result demonstrated the feasibility of the approach and the potential benefits of the CeSA

    Enabling e-Research in combustion research community

    Get PDF
    Abstract This paper proposes an application of the Collaborative e-Science Architecture (CeSA) to enable e-Research in combustion research community. A major problem of the community is that data required for constructing modelling might already exist but scattered and improperly evaluated. That makes the collection of data for constructing models difficult and time-consuming. The decentralised P2P collaborative environment of the CeSA is well suited to solve this distributed problem. It opens up access to scattered data and turns them to valuable resources. Other issues of the community addressed here are the needs for computational resources, storages and interoperability amongst different data formats can also be addressed by the use of Grid environment in the CeSA

    A collaborative e-Science architecture towards a virtual research environment

    Get PDF
    This paper presents a novel Collaborative e-Science Architecture (CeSA) to address two challenging issues in e-Science that have arisen from the management of heterogeneous distributed environments. By combining the capabilities of peer-to-peer and Grid computing, the architecture provides an environment for scientific collaborations within distributed, loosely coupled research communities and brings computation and data intensive resources to the desktops of the scientists in these communities. The Reaction Kinetics research community had been used as a case study to capture realistic requirements. A prototype based on the architecture was developed for user experiment and evaluation. The results of these experiments were promising. It has provided further motivation to evolve CeSA towards a Virtual Research Environment

    A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking

    Get PDF
    Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a metaanalysis of transcriptome-wide gene expression using whole blood-derived RNA from 10,233 participants of European ancestry in six cohorts (including 1421 current and 3955 former smokers) to identify associations between smoking and altered gene expression levels. At a false discovery rate (FDR) < 0.1, we identified 1270 differentially expressed genes in current vs. never smokers, and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years after smoking cessation, suggesting that the molecular consequence of smoking may persist for decades. Gene ontology analysis revealed enrichment of smoking-related genes for activation of platelets and lymphocytes, immune response, and apoptosis. Many of the top smoking-related differentially expressed genes, including LRRN3 and GPR15, have DNA methylation loci in promoter regions that were recently reported to be hypomethylated among smokers. By linking differential gene expression with smoking-related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment for smoking-related gene expression signatures. Mediation analysis revealed the expression of several genes (e.g. ALAS2) to be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 and C-re

    A meta-analysis of gene expression signatures of blood pressure and hypertension

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Quantum chemical study of the ( Z

    No full text
    corecore